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Quantum-classical correspondences of the Berry-Robnik parameter
through bifurcations in lemon billiard systems
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The quantum level statistics affected by bifurcations in classical dynamics is studied by using a one-
parameter family of lemon billiard systems. The classical phase space of our system consists of regular and
irregular regions. We determine an analytic solution of the phase volume for these regions as a function of the
system parameter and show that the function reveals a cusp singularity at the bifurcation point. The function is
compared with its quantum mechanical counterpart, the Berry-Robnik parameter. By estimating the semiclas-
sical regime from the effective Planck constant that validates the quantum-classical correspondence of the
Berry-Robnik parameter, we determine a region of the system parameter where the cusp can be reproduced by
the statistical properties of the eigenenergy levels.
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I. INTRODUCTION PBR(O,l;S)=%7TSe_(”/4)SZ. (1.4

An important correspondence between classical and quan-
tum mechanics is observed in the statistical properties ot was verified that the formulél.1) can, with great accu-
energy levels. As is well known, universal classes appear ifaCy, reproduce the numerical data for the level spacing dis-
spectral fluctuations that are characterized by a level spacirigibution in the very high energy region, i.e., the semiclassi-
distribution; the level spacing distribution of an integrablecal energy region, where the effective Planck constant is
case is characterized by the Poisson distribufibg], and negligible in comparison with the volume ratio of structures
that of a strongly chaotic system is characterized by thdn the classical phase spadel—18. This formula associates
Wigner distribution[3,4]. Furthermore, the transition from the level spacing distribution of the quantum system with the
the Poisson distribution to the Wigner distribution is ob-geometry of the classical phase space that is affected by the
served in mixed systems where classical phase space consibifrcation. This means that the bifurcation of the classical
of regular (quasiperiodiz and irregular (chaotio regions dynamical system can be detected by quantum level statis-
[5-9]. Berry and Robnik surmised that the energy levels oftics. However, only a few attempts have been made thus far
mixed systems consist of two separate sequences, the Pol§- StUdy the interrelation between the bifurcation and the
son distributed sequence and the Wigner distributed seenergy level statistics.
quencd 10]. The relative weights of these two sequengas, In a previous paper dealing with oval billiard systems
andp, (p,+p,=1), are assumed to be the relative Liouville [;9], we dgmopstrated that the effect of b|furc:_:1t|ons in clas-
measures of the regular and irregular regions on in the erfiical Hamiltonian dynamics appears clearly in the energy
ergy surface. The simple superposition of the two level selevel statistics of the corresponding quantum system. That is,
quences, neglecting interactions between them, yields th&€ quantum mechanical value of the Berry-Robnik param-

Berry-Robnik formula, eter obtained by fitting the level spacing distribution to the
Berry-Robnik formula had a significant dependence on a sys-
d2 J tem parameter due to bifurcation. Figure 1 shows the Berry-
PBR(Pl,Pzis)ZCE exp(—pls)erfc(TpZS”, Robnik parametep3(5) where the horizontab axis repre-

sents the system parameter aad is the point of the
bifurcation. The Berry-Robnik parameter drops suddenly at

where S is the level spacingC is a constant value that is the bifurcation point and has a dip &t. The purpose of this

determined by the normalization conditiofi; PE<(S)=1,  Paper is to analyze this singularity of the Berry-Robnik pa-
and erfc) is the error function, rameter at the bifurcation poi= 6.

In the oval billiard, the classical phase space is too com-

2 (= plicated to deal with at the bifurcation point precisely be-

erfo(x) = —f exp(—t?)dt. (1.2 cause a second chaotic region appéags. For this reason,

\/; % in this paper we deal with a simplified model called the

; ; ; -+/emon billiard. The wall of this system has partially the same

gmiso;oglﬂ%;ji ??,(jge the gap between the Poisson dIStrIboundary geometry as that of the oval billiard, so that there

appears the identical bifurcation &t .

(1.2

PBR(1,0,5)=e"S 1.3 The lemon billiard was first introduced by Heller and
Tomsovic [20] and studied by Ree and Reicf21]. The
and the Wigner distributiong;=1,0,=0), shape of the billiard depends on the value of one parameter.
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o) FIG. 2. Schematic picture of the lemon billiard whose boundary

. wall gD consists of two circular arcs. The parametds defined in
FIG. 1. The Berry-Robnik parametgf(s) versus the system the interval < 6<1.

parameters for quantum oval billiard419]. 5. on the horizontal

is is the bif i int. . . - .
ais is the bifurcation parameter point tion. In the parameter region<06<1, the billiard system is

) ] ) nonintegrable and softly chaotic, where the motion of the
As the parameter is varied, the system changes continuouspticle can be regular or irregular depending on the initial

from integrable to nonintegrable. The transition is accompaggndition. As the parameter is varied, the system makes a

nied by successive bifurcations, i.e., the creation and disagransition from integrable to nonintegrable with successive
pearance of a periodic orbit which has a great impact on thgjf,rcations.

phase space structures. . Since the lemon billiard is a simplified model of the oval
_The present paper is organized as follows. The lemotjjjiard, the geometry of its boundary wall is partially iden-
billiard is introduced in Sec. Il, and Sec. lll involves an tjcy) to that of the oval billiard, so that the same bifurcation

analysis of the Poincarsurface of section where the bifur- Lo . . L~
catio); parameter is determined. In Sec. IV, the stability ofOf,:[he periodic orbit _boun_cmg between t_h_e regidhd, and
the linearized Poincammapping is analyzed for the bifurcat- P1P2 can be actualized in the lemon billiard as well.
ing orbit. In Sec. V, volume ratiogelative measures of the
phase space components on the Poinsaréace of section IIl. BIFURCATION
are determined analytically and characteristic structures in-
duced by the bifurcation are also analyzed. In Sec. VI, the We consider the successive collisions of a particle with
volume ratios are compared with the quantum mechanicghe walldD and define the Birkhoff coordinateg(sina) as
data for the Berry-Robnik parameter, and the Berry-Robnikshown in Fig. 3, wherep is the normalized curvilinear dis-
parameter in the vicinity of the bifurcation point is precisely tance measured along the wall from the origirto the col-
analyzed in Sec. VII. lisional pointB, anda is the angle between the inner normal
and the orbit reflected from the walD. The Birkhoff coor-
dinates are the most natural representation of Poinsare
Il. LEMON BILLIARDS face of a section for billiard systems and describe the global
behavior of the motion§22].
Figure 4 shows the trajectories in Birkhoff coordinates for
various values ofé. In the cases ofs=1 (circle) and §
= 5.=(4— 7)/3, the whole surface of section is completely
filled with regular and irregular orbits, respectively. In all
cases of &X6< 5, and §,< <1, regular and irregular re-

Figure 2 shows the schematic definition of the lemon bil-
liard. The wallgD for the billiard is constructed as follows.
In a rectangular system of coordinatesy(), we consider
four points P,,P,,P3, and P, with coordinates (1,1),
(-1,1), (—-1,-1), and (1;-1), respectively, forming a
square with side length 2. Let the point with coordinate (1
— &8, 0) be denotedP,, where§ is defined in the interval 0
<o§<1. O, is the intersection of the extension Bf P, and

they axis, and it is the center of an aFE;PZ. The wall gD
of the billiard consists of the above arc and another arc,

P§P4, constructed similarly. The initial condition of the mo-

tion of a particle is determined by its position and direction. p '(ab’, o)
The shape of the billiard wall depends on the valueSof {
In the cases=1, the shape of the billiard wall is circular, (¢§a)
and the billiard system is completely integrable. The motion
of the particle is regular for any choice of the initial condi- FIG. 3. Definition of the Birkhoff coordinates#, sina).
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(b)

FIG. 5. (a) An elliptic periodic orbit with a period of 2 at
=0.4.(b) A hyperbolic periodic orbit with a period of 4 &=0.4.
(c) Neutral periodic orbits with period 4 &= &, .

where a hyperbolic periodic orbit, as shown in Figh)5
appears suddenly at=0 and 0.5. In the parameter region
6> 64, the corresponding hyperbolic fixed points with a pe-
riod of 4 compose a PoincaRirkhoff chain with the elliptic
fixed points with a period of 2 that are mentioned above.

As 6 increases further, these hyperbolic periodic points at
(¢p= ¢ ,sina=sina,),

*
A

darctafiy28/(1—68)]

+

N

+ + 1
b (O)=35*

(3.2

35°—86+3
2(1—6)

sina, ==+

[0) push the island tori toward the elliptic fixed points at (
=0.5+0.25,sine=0), as shown in Figs.(4)—4(e).

FIG. 4. Poincaresurfaces of section fos= (a) 0.00001,(b) When é is equal to another critical poini,
0.04, (c) 0.35,(d) 0.445,(e) 0.451 416 229 §,), (f) 0.452,(g) 0.5,

(h) 0.75,(i) 0.9, and(j) 1. 4—\7
5°:T' (3.3
gions coexist in the Poincamsurface of section.

As ¢ increases from 0, one can observe the gradual erHere one can see a bifurcation where the hyperbolic fixed
hancement of an irregular region around two island tori cenpoints mentioned above collide with the elliptic points at
tered at elliptic fixed points ¢=0.5+0.25,sine=0), as (¢=0.5+0.25,sina=0) as shown in Figs. (), and simul-
shown in Figs. 4a)—4(c). But the sizes of these island tori taneously these fixed points disappear through the bifurca-
suddenly change in the parameter region above the criticalon process. As a consequence, the whole surface of section
point &y, is filled with a chaotic orbit a= .. Thus one can observe

a sudden decrease in the size of the island tori betwigen
5,=2—1/3, (3.) andé,, as shown in Figs. (4)—4(e). We have summarized
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Unstable periodic point tions since this bifurcation induces the creation and disap-
- ' ' ‘ pearance of the periodic orbit with a period of 2 that is

closely associated with the largest island tori in the phase
space. In this paper, we focus our attention on this bifurca-
tion in the following sections.

0.5 ; {

IV. STABILITY ANALYSIS OF BIFURCATING
0.2 8 o3 0.4 oA 0.5 PERIODIC ORBIT

{ Unstable periodic point Here we linearize the Poincareapping and analyze the
stability of the periodic points with a period of 2 ath(

g | {Sableperiodicpoint ™~ | =0.5+0.25si0=0).
@ The (n+1)th iterated point on the Poincasurface of
. section is obtained from the previough point as ¢,
1 Sina, _ = ¢n+1(dn 1Sin0‘n)_ ,and ) SiMnfl:Sinan+_1(¢n ,Sin_ar,)._
1 5 o o 5 05 Therefore, the Poincamaapping is linearized in the vicinity
' ' 5 ' ¢ ' of the point (¢q,sinag) as follows:

FIG. 6. Bifurcation diagram in which the solid curve representsA¢ _ IPn+1 Ag+ IPn+1 A sina
unstable periodic points and the dashed line represents a stable pe- n+i dd, (b0.sinar) " gsinay, (60.5inar) n
riodic point. oo oo @.1)
the above bifurcation process in diagrams, as shown in Fig. gsine, .,

6. 6= 4. is the special critical point where the cent@y of A sinan+1=T Ao,

the arcP, P, is just at¢y=0.25 on the opposite afe;P,, so " g sinag)

that a family of periodic orbits with a period of 4 appears, as Jsina

shown in Fig. %c), ,aII along the lines$=0.25 and ¢ 2> Tt Asina,. (4.2
=0.75 on the Poincarsurface of section. dsinay ($g.sinag)

In the parameter regiod> &, elliptic fixed points with a )
period of 2 are created again ap€0.5+0.25,sine=0) as  In the lemon billiard system, the linearized Poincanap-
shown in Fig. 4f), and as a result the phase volume of theping in the vicinity of the fixed point at ¢=0.5
regular region increases again. +0.25,sina=0) is described by using thexX22 monodromy

Furthermore, numerous bifurcations appear in addition tanatrix as
the one mentioned above that correlate with the creation and

disappearance of various periodic orbits. We summarize the Adniz | Aoy @3
parameter values for some typical bifurcations in Appen- Asinag,, - ) Asina, )
dixes A and B. The bifurcation af= 6, has the strongest
impact on the phase space structures among these bifurcahere
|
IPn+2 IPn+2 IPn+1 IPn+1
M(8)= IPn+1lgrs0) 7SN+l 9750 IPn (0250 dsiNan| 55 0 @4
| asinapy, asinan, asinan. asinan, '
IPn+1 (0750 dsinan,y (0.75,0) Ibn (0250 Jsina, (0.25,0)
( 2[2w(8)—1]2—1 Aw(S)[1—2w(8)]R(S)
= 4.
4[(2w(8)—1)(1—w(5)]/R(5) 2[2w(6)—1]1>—-1 )’ .
|
with =0) can be estimated from eigenvalues of the monodromy
matrix M () [23,24], \ .., which are given in terms of the
1-o V146 trace of M () as follows:
w(d)=1- , R(8)= . (4.6)
V1+ 62 6

1
= — 2_ 1/
The stability of the periodic points até{=0.5*0.25,sinw A=(0)= 2(Tr M(&={[Tr M(§*-41). (4.7
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FIG. 9. Numerical plots op,( ).
0
0 01 02 03 04 05 06 07 08 09 1 shows sudden increases at various parameter points. These
é‘ points of increase correspond to bifurcation parameters; we
give some of these parameter values in Appendixes A and B.
FIG. 7. The trace of the monodromy mattikr M(6)|. The ratiop,() at the parameter poini= 5, shows a sig-

nificant structure due to the bifurcation. Here let us analyze
The orbit is stable, unstable, and neutral wh&nM|<2, the precise structure of this function ét & .
|Tr M|>2, and|TrM|=2, respectively. Thus, as shown in ~ The phase space in the regiop<<5< 4. consists of is-
Fig. 7, the periodic points under consideration are stabléand tori centered at#=0.5+0.25,sina=0) and a single
when 0< 6<6,, 6,<6<1 and neutral whed=0, 5,, and  chaotic sea, as shown in Fig(e} so that the total volume
1. Note that the periodic points are neutral just at the bifurfatio of the regular regiop,(=1-p,) is calculated effec-
cation pointé= &, and that periodic orbits with a period of tively only from the contributions of the island tori. These
4, as shown in Fig. (&), appear only at the bifurcation point isléin+d tori are encircled by the unstable periodic points at
for various reflection anglea at $=0.25 and 0.75. These (¢~ ,Sina,). In the parameter regiod; < 6= o, the outer
neutral periodic points compose a family of bouncing peri-bound surface of the island torus is approximated success-
odic orbits as shown in Fig. 8. fully by a rectangle. The two sides of this rectangle are de-
noted byA andB, and the lengths of these sides are given by
the distances between the unstable periodic points as fol-

V. ANALYSIS OF CUSP AT THE BIFURCATION POINT lows:

In this section, we analyze the volume ratio of the regular )

and chaotic regions on the Poincanerface of section. AS) =t — b =l — = arcsinB(6/2)
Figure 9 shows numerical plots of the volume ratio of the . . . " 2arctafny25/(1-8)]’

irregular region. The rati@,(5) is obtained by using a nu-

merical method introduced in Ref19]. The ratio p,(5) (5.3)

. 35°-85+3
B(6)=sina,,— sina,,=———=—— (5.2

Therefore the ratiop, and p, can be determined approxi-
mately as functions of as follows:

p1()=A(S)XB(J), &<6<5., (5.3

p2(6)=1-p1(9). (5.9

Note thatp,() decreases toward 0 & 6. .

Here let us focus our attention on the parameter depen-
dence ofp4(8) andp,(d) in the neighborhood of the bifur-
cation point §=6.. Equations(5.1) and (5.2) can be ex-
panded by describing= 6.— € for smalle (<4.) as

FIG. 8. Schematic picture of a periodic orbit that appears only at W
the bifurcation pointé=4.. The periodic orbits, which pass A= c €2+ 0(€%?),
through the point0; on the symmetry line, compose a family of 4(1- 6.)arctat \/Z_(Scl(l— 8]
bouncing ball orbits. (5.5
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The above analytic solutiofb.3), depending on the ap-
proximation by the rectangle, is validated numerically. Fig-

0.9}
ure 10 shows schematic comparisonspgfd) between an
0.8 analytic curve of Eq(5.4) and numerical plots in the interval
0.7f 61=6=<6;. The numerical plots are obtained by using the
E_ 06k method introduced in RdfL9]. One can see that the numeri-
I cal data fit the analytic curve well in the parameter region
: 0.5¢ betweend; and §, and reproduce the linearity of E¢.7)
~ 04} with a high degree of accuracy. Thus we see that the approxi-
< 03l mation of Eq. (5.3 is validated numerically and that the
) analytic curvesp(8) and p,(8) almost completely repro-
0.2r duce, respectively, the regular and chaotic regions in the
01} phase space betweéh and &, .
0 . . .
02 03 04 0.5 0.6
6 VI. THE BERRY-ROBNIK PARAMETER

AT THE BIFURCATION POINT
FIG. 10. Comparison op,(5) between an analytic curve and
numerical plots in the vicinity of the bifurcation point &t §.. We Here we compare the volume ratig of the phase space
have not yet succeeded in determining an analytic solution focomponent with the quantum mechanical data for the Berry-
p»(8) in the parameter regiof= 6, . Robnik parametep;! 1 Figures 11a)—11(c) show schematic

comparisons betweep,(5) and p3(8) for various energy

_ \V8-66: 3 ranges wheren is the level number of a desymmetrized
B= 2(1—6,) € +0(e™), (5.6 eigenstate with odd-odd parity. The Berry-Robnik parameter
is obtained by fitting the level spacing distributioR§S) of
and hence Eqg5.3) and(5.4) can be rewritten as the quantum lemon billiard to the Berry-Robnik formula
(1.), where the fitting parametgsy is determined by the
p1(€)=c(8;)e+0(€?), (5.7 least squares method for the cumulative level spacing distri-
bution W(S)=[5P(S')dS. One can see that the quantum
p2(€)=1—ps(e), (5.8 mechanical valugd(s) clearly reproduces the global en-
hancement op,(6) in the neighborhood of the bifurcation
where point. However, a large deviation exists betweggs) and
p2(6) in the low energy ranges, as shown in Figs(aland
o5, 4-36; 5.9 11(b). This is because the Berry-Robnik formula is appli-

cable only in the so-called semiclassical regime in the high

2(1- 8,)%arctafi\26,/(1— 8,)]
( 2 L o/ o] energy region where the effective Planck constag(n),

It should be noted thap,(5) at the bifurcation point is a
cusp since the constant term does not appear in the above
expansion(5.7), while the expansion coefficient of the first
order term does not vanish, and hengée) at the bifurca-
tion point is a linear curve.

The relationship between the relative measiyen the Poincare
surface of section and the relative Liouville measure on the energy
surface is explained in Sec. VIII.

(©
1 FIG. 11. Schematic compari-
09 son between the Berry-Robnik pa-
rameterp3(8) (¢) and the vol-
ume ratio of the chaotic region

(b)

" ¥ p2(8) (solid curve for various en-
B o . ergy ranges. In each case, we used

and 2000 eigenenergy levelg, with

b . (@ ne[2001,4000, (b) n

€[8001,10000, and (c) n

o2 €[17001,19 000 which have

odd-odd parity. The quantum me-
chanical valuep(é) is calculated
effectively by the boundary ele-

01 6] 66 (A 6] 6C 01 61 6‘3
! ! AL ] AL !

9
025 03

035 04

)

045 05

055

025 03
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(@ (b) (c)
08 OI,0267 o8 oi0133' ' _ 05 200914 .
) Cf | Cf — | X =17000
= 10¢"(p=2000) o7y 10 (n=s000) o7t 107 ) FIG. 12. Schematic compari-
I |/ |/ son between the Berry-Robnik pa-
06 | 06| | 06| q
q | q | . q | rameterpi(e) (<) and the ana-
,01 os} | ’01 ost ! ® q o5t lytic curve of the volume ratio
and : . | and o : o and o : p1(€) near the bifurcation_point
) | p N p 1 €=0. In each case, 2000 eigenen-
)01 03 : . ) : [ * 1 03 : ergy levelsk, are us(ebc; with(a)
I I | ne[2001,4000, n
o2 1 /° o2} | ozy! €[8001,10000, and (c) n
,° RIPA | €[17001,19 00D with odd-odd
0.1 s. o 1 01 01 p| .
| A parity.
o L1 o 0
o 0.05 01 0.15 02 0 0.05 0.1 0.15 02 1} 0.05 01 0.15 02
& & &
1 acteristic structures at the bifurcation poi# 0 or 6= 6.
he(N) = —, (6.1 This is because the size of the island region decreases toward
van 0 ase—0, and the quantum system at the bifurcation point

cannot satisfy the condition of E¢6.2) while in the finite

is sufficiently smaller than the volume ratio of the island tori energy rangen<,

[16],
(n,6) e{her(n)<p1(9)}, (6.2 lim pi(e)=lim c(5.)e=0. (7.0

e—0 e—0
the Berry-Robnik parameter in the low energy range does n . . -
sree i e cotea n e casscal hnaiclsysen 47, 1 Bery Sobnk ol i b e erergy
e e iy s PO, Th COndo() 1) o @ g
becomes much higher, as shown in Figsliland 11c) energy leveh gives a critical value of the system parameter

It is noteworthy that there is still a large deviation be- € which is calculated from Eq5.3), Eq. (6.1), and e= d;

tweenpJ(5) andp,(5) in the neighborhood of the bifurca- ~ ¢ as follows:
tion point, i.e., the Berry-Robnik parameter at the bifurcation
point is blunt while the volume ratio of the chaotic region in
the classical dynamical system is cuspidal.

Figures 12a)-12(c) compare the volume ratio of the
regular regiorp,(€) and the Berry-Robnik parametgf( )
in the neighborhood of the bifurcation point a=0. Here
we have to remember that the ratig(€) has a linear depen-

€(n)=6c—py (he(n)). (7.2)

In the region near the bifurcation point<Q<e®(n) [ or

S.— €%(n) <6< 8], quantum systems cannot resolve the is-
land regions sincéigy(n)>p,. The sizes of island regions
are beyond the maximum ability of the resolution by the
: quantum eigenstate, so that the Berry-Robnik formula is not
dence on the system parameéeas shown in Eq(S.7). One applicable to the quantum system. This means that the Berry-

can see that there is a large deviation betwpefe) and . .
; . . . : Robnik parametep? is not guaranteed to reprodupe. On
q 1
pi(e) in the neighborhood of the bifurcation point and thatt!_e other hand, in the parameter regiem e°(n) [or 8< 3,

the linear dependence on the system parameter is not repro- ¢(n)], the quantum system can resolve the island region
duced by the quantum mechanical value of the Berry-Robnik . € ' q Y 9

parameter. This means that the Berry-Robnik formula does"°€ the effective Planck constant is smaller than the size of

not work at all in the vicinity of the bifurcation point. The >eclslant(r:i] reBglonhgf(rt;) .<kpf1(6)' lln the Ifaranrlet(_—:‘r re%:oa f
above disagreement is analyzed in the next section. 6.(n) € berry-robnik formuia Works wetl since the el-
fective Planck constant is sufficiently smaller than the size of

the island regionhq«(n) <<p,. Therefore, one can observe in
the parameter region near the bifurcation paistO that the
quantum mechanical valyg!(e) cannot reproduce its coun-
In the last section, we showed numerically that the Berryterpart in the classical dynamical systepi(e).
Robnik parameter does not agree with the volume ratio of Figures 12a)-12c) show schematic comparisons be-
the classical phase space in the neighborhood of the bifurcdween the Berry-Robnik parameter for various energy re-
tion point. Although the volume ratio of the classical dy- gionspj(e) and the analytic curve of the ratje(€) given
namical systemp; ,i=1,2, at the bifurcation point showed a by Eq.(5.3). In each figure, the vertical dotted line represents
cuspidal structure and a linear dependence on the systefife®(n). One can see thaij(e) agrees withp,(e) in the
parameter, the quantum mechanical counterparts, the Berryegion e>€°(n). On the other hand, a large deviation ap-
Robnik parametep,i = 1,2, could not reproduce these char- pears between them near the origin 0. Note that the cus-

VII. QUANTUM MECHANICAL LIMITS IN RESOLUTION
OF THE BERRY-ROBNIK PARAMETER
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TABLE I. The Berry-Robnik parameter at the bifurcation point, analyze the Berry-Robnik parameter in terms of the classical

pl(5,), for various ranges of energy levels. volume ratio.
First, the phase volume of the regular and chaotic regions
n Pi(S)=1-p3 in the classical phase space was determined analytically as a
2001—4000 0.243 function of the system parameter. Using the unstable peri-
8001-10000 0.182 odic orbit, the total phase volume of the island tori could be
17001-19000 0.157 approximated successfully with rectangles, and could be
33001-35000 0.093 characterized as a function of the system parameter. The vol-
52001-54000 0.072 ume function was expanded by a small parameter in the vi-

cinity of the bifurcation point. We were able to show that the
volume function was cuspidal just at the point of the bifur-

pidal structure in the vicinity of the bifurcation point cannot cation since the constant term in the expansion series van-
be reproduced by the quantum mechanical Berry_Robnik pdShed, and that the volume function had a linear dependence

rameter at all. One can see that the blunt region near th@n the system parameter near the bifurcation point since the
origin, 0< e<10e°(n), gets smaller as the energy of the sys-expansion coefficient of the first order term did not vanish.

tem gets higher. This is becaus&n) decreases to 0 as  1herefore, we were able to determine the structure of the
oo, volume ratio at the bifurcation point.
Secondly, we numerically checked the above analytic re-
1 1 sults for the volume ratio of the classical phase space. The
lim €“(n)~ lim —— —==0, (7.3  volume ratios of the regular and chaotic regions agreed well
n—o nw €(0c) \4n with the numerical results of these regions. Thus, the ap-
proximation part of the analytic derivation was numerically
so that the blunt region diminishes in width in the semiclas-alidated.
sical limit. Table | shows the Berry-Robnik parameter at the  Thirdly, the quantum mechanical data Berry-Robnik pa-
bifurcation point for various energy ranges. The Berry-rameter was compared with the volume ratio of the classical
Robnik parametepf(5;) does not agree with the volume phase space in the vicinity of the bifurcation point. However,
ratio p,(6;)(=0) in any energy range, and the deviation a large deviation appeared between them; the Berry-Robnik
from this ratio is very large in the low energy range. How- parameter at the bifurcation point was blunt and could not
ever, the deviation at the origin becomes smaller as the erprecisely reproduce the cuspidal structure of the volume ratio
ergy of the quantum system gets higher, and the Berryand linearity. This is because the Berry-Robnik formula truly
Robnik parameter agrees with the volume ratio better in thelescribes the quantum level statistics only in the extra deep
high energy ranges than in the low energy ranges. Thereforgemiclassical regiméor high energy region while in the
one can see that the Berry-Robnik parameter can reprodudew energy range it does not work well since the quantum
the cuspidal structure of the functign(d) at 6= 5. more  eigenstate cannot resolve the detailed structure in the phase
precisely in the higher energy region and that the quanturspace. We compared the effective Planck constant with the
mechanical Berry-Robnik parametgf{(e) reproduces the phase volume of the island tori that we determined analyti-
linear dependence qf;(€) on € very well in the semiclas- cally, and derived as a function of the level numipethe
sical regime, as shown in E@6.2). This result means that characteristic threshold of the system paramefén) that
the statistical properties of energy levels in the high energylescribed the parameter region around the bifurcation point
range can be reflected sensitively by the local enhancememthen the Berry-Robnik formula did not work well. We
of island tori in the classical phase space whose volume rashecked numerically that the quantum mechanical data of the
tios are controlled by the periodic orbit ap{, ™ ,sina,). Berry-Robnik parameter in the regios® €°(n) accurately
reproduced the classical volume ratio where the effective
Planck constant was sufficiently smaller than the volume ra-
tio of the island region. Therefore, we analytically and nu-
In this paper, we analyzed the quantum mechanical Berrymerically evaluated the origin of the disagreement between
Robnik parameter, which is affected by a bifurcation of thethe Berry-Robnik parameter and its counterpart the classical
classical dynamical system. We revealed the detailed strusrolume function in terms of the limit of resolution for the
ture of the Berry-Robnik parameter at the bifurcation point,island tori by the quantum eigenstate.
i.e., the Berry-Robnik parameter in the semiclassical energy Finally, we showed numerically that the Berry-Robnik pa-
region was shown to have a linear dependence on the systermmeter in the high energy region accurately approximated
parameter in the vicinity of the bifurcation point and to bethe classical volume ratio, and that it reproduced the cusp
cuspidal just at the bifurcation point. and the linear dependence more precisely in the high energy
The quantum Berry-Robnik parameter, which was ob-range than in the low energy range.
tained by applying the Berry-Robnik formula to the level In this paper, we used as the classical Berry-Robnik pa-
spacing distribution, agreed well with the classical volumerameter the relative measuge(SOS) of the phase space
ratio (the relative measure of the phase space components @@mponents on the Poincasarface of sectioiSOS. But it
the Poincaresurface of sectionin the high energy range and is the Liouville measurep,(I') on the energy surface
was greatly affected by the bifurcation. Thus we were able t¢I":H(qg,p) = E=consi that must be used. According to the

VIlIl. SUMMARY AND DISCUSSION
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Berry-Robnik theory{10], the Liouville measure should be (a) n=1
equal to the quantum Berry-Robnik parameter in the strict
semiclassical limit, so that we should discuss, for a given Aﬂ
invariant componentw (=2), the relationship between
po(I') and p, (SO9, and their equivalence in our model. (b) n=2
This relationship was derived by Meyer as follows

qudpé(E—H(q,p))xw(q,p) (¢)n=3

frdqdpﬁ(E—H(q,p))

FIG. 13. A family of glancing periodic orbits that are sub-

f dX7(X) xo(X) wa dXy,(X) scripted byn.

SOS SOS

- - retical viewpoint, although there is a lot of numerical evi-
f dX7(X) f dX7(X) dence to verify the validity of the Berry-Robnik formula;
S0s S0S Prosen and Robnik found that this formula approximates the

=C,p,(S09, (8.1)  numerical data in the far semiclassical regime better than the

Brody distribution doe$14,16,13. Li and Robnik[18], Jac-
where x,(X) is the characteristic function of the invariant quod and Amie{26], Prosen15], and Makino, Harayama,
component defined as and Aizawg 17] separated the energy levels into regular and

) irregular subclasses, and analyzed substatistics for each class
1 ifXew in order to check the Berry-Robnik conjectUr&0]. In this
Xo(X)= 0 ifXecw paper, by using the lemon billiard system, we showed that
the Berry-Robnik parameter at the bifurcation point could
and not agree exactly with the classical volume ratio while in the
finite energy range. However, in the high energy region, it

reproduced well the characteristic structure of the classical

T dX

® Jsos T volume ratio due to the bifurcation.
C,= = (8.2
X)d X Tsos
sosT( ) APPENDIX A: BIFURCATION POINTS OF GLANCING
PERIODIC ORBITS
f dx+f dX Glancing periodic orbits with a period of &¢1),n
Xew Xew =1,2,3 ..., which are shown in Fig. 13, can exist in the

= - (8.3 parameter region
f dX+(1/7’w)f _7(X)dX
Xew Xe

w

S =<06<1, (A1)
7 is the average time of recurrence of a trajectory to the SOS,

which is constant for a given trajectory and thus also inside avhere

given invariant component, e.gr,,= 7(X e w)=const, but

changes from one component to another. One can see from s,=d(n)—d(n)?—1, (A2)
Eqg. (8.1 thatp,(I') andp, (SOS are not the same. How-
ever, in the neighborhood of the bifurcation point &t,

C,=1 since each term in E@8.3) satisfies the relation d(n)=1+ l/tarf ., n=123.... (A3

7 n
2n+1

fxewdx> JerdX’ fxewdx>7'_w erT(X)dX' The critical valuess= §,, are special parameter points where
(8.4 the glancing periodic orbits, subscripted hy appear sud-
denly from the singular regions on the boundary wall,
so thatp, (SOS approximateg,(I') very well in the neigh- =0 and 0.5. In the parameter region Hé1), the corre-
borhood of the bifurcation point. This means that the charsponding periodic points on the Poincanarface of section
acteristic structure op, (SOS at 6=, i.e., the cusp sin-  are (¢(n),sina(n)),
gularity and the linearity, is reproduced by the Liouville
measurep,(I") on the energy surface as well.

The assumptions used in the derivation of the Berry- ¢,(n):E 1— a(n) , (A4)
Robnik formula have not yet been validated from the theo- 4 arctafi\26/(1—6)]
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(a) Type M1
TN

L N 1N

(b)Type My

/ A

(c)Type Wy

AN

(d)Type Wy

AN

FIG. 14. Bouncing periodic orbits that are classified into two
types of series, typ#,, and typeW, (n=1,2).

(A5)

APPENDIX B: BIFURCATION POINTS OF BOUNCING
PERIODIC ORBITS

Tne bouncing periodic orbit with a period ofnsn
=1,2,3..., can beclassified into two series of typical
types, i.e., typeM, and typeW, as shown in Figs. 14)—
14(b) and Figs. 14c)—14(d), respectively. Although we have

PHYSICAL REVIEW E 63 056203

4-\7
dwi=—3 —=0.45141629 ..., (B3)
Swa=4—1/15=0.127 0166538 . ., (B4)

X2—4x+1 —x2+4x—1+(1-x)V1+x?

Ve Vax+ (V1+2— (1-x))2

=x(a solution of the equation®— 112x°+ 46X*

5w3: X

— 7363+ 46K — 112X+ 7),
=0.0949766323. ..
(BS)

APPENDIX C: EFFECTIVE PLANCK CONSTANT

Quantum mechanics with degrees of freedom can re-
solve fine structures whose volume in thé-dimensional
phase space is larger thdrd or (27%)f. h' is called the
Planck volume. The number of eigenenergy levels counted
from the ground stateN, is obtained by applying the
Thomas-Fermi approximation that each quantum state is as-
sociated with a phase-space voluhle One has therefore

V

N= E (Cy

whereV is the phase volume of the classical dynamical sys-

not succeeded in deriving the bifurcation parameters of thes@m Equation(C1) is the Weyl term. The Planck volume

periodic orbits in a systematic formulation of the subscripts
n, some parameter values are shown below where the pe

odic orbits, classified by the subscript, or W,,, appear

suddenly from the singular regions on the boundary wall,
¢=0 and 0.5. These periodic orbits can exist in the param-

eter region beyon(;JSMn or dy, .
Sy1=2—/3=0.2679491924 . .,
2x—(1-x)(1—x— \1+x?)
Vax+(1-x—1+x0)

=x(a solution of the equation X3 — 40x3+ 74x?

(B1)

5M2:X 1—-x=

—40x+5=0)
=0.1782333901 . ..
(B2)

normalized by the volume of the whole phase spateis

ré’xpressed as

. ht 1
heﬁE V = N (CZ)
For plane billiard systems with= 2 in particular, Eq(C2) is
rewritten ash;=1/N so that the corresponding area in the
tangential spacéor in the Poincaresurface of sectionis
described by taking the square root of EG2) with f=2 as

follows:

h 1

hef=—==—==,
eff \/v \/R

whereN=4n. h4(n) is called the effective Planck constant.
It gives the minimum area in the Poincaserface of section
whose structure can be resolved by the quantum eigenstate.
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