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Quantum-classical correspondences of the Berry-Robnik parameter
through bifurcations in lemon billiard systems
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The quantum level statistics affected by bifurcations in classical dynamics is studied by using a one-
parameter family of lemon billiard systems. The classical phase space of our system consists of regular and
irregular regions. We determine an analytic solution of the phase volume for these regions as a function of the
system parameter and show that the function reveals a cusp singularity at the bifurcation point. The function is
compared with its quantum mechanical counterpart, the Berry-Robnik parameter. By estimating the semiclas-
sical regime from the effective Planck constant that validates the quantum-classical correspondence of the
Berry-Robnik parameter, we determine a region of the system parameter where the cusp can be reproduced by
the statistical properties of the eigenenergy levels.
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I. INTRODUCTION

An important correspondence between classical and q
tum mechanics is observed in the statistical properties
energy levels. As is well known, universal classes appea
spectral fluctuations that are characterized by a level spa
distribution; the level spacing distribution of an integrab
case is characterized by the Poisson distribution@1,2#, and
that of a strongly chaotic system is characterized by
Wigner distribution@3,4#. Furthermore, the transition from
the Poisson distribution to the Wigner distribution is o
served in mixed systems where classical phase space co
of regular ~quasiperiodic! and irregular ~chaotic! regions
@5–9#. Berry and Robnik surmised that the energy levels
mixed systems consist of two separate sequences, the
son distributed sequence and the Wigner distributed
quence@10#. The relative weights of these two sequences,r1
andr2 (r11r251), are assumed to be the relative Liouvil
measures of the regular and irregular regions on in the
ergy surface. The simple superposition of the two level
quences, neglecting interactions between them, yields
Berry-Robnik formula,

PBR~r1 ,r2 ;S!5C
d2

dS2 Fexp~2r1S!erfcSAp

2
r2SD G ,

~1.1!

where S is the level spacing,C is a constant value that i
determined by the normalization condition,*0

`PK
BR(S)51,

and erfc(x) is the error function,

erfc~x!5
2

Ap
E

x

`

exp~2t2!dt. ~1.2!

This formula can bridge the gap between the Poisson di
bution (r150,r251),

PBR~1,0;S!5e2S ~1.3!

and the Wigner distribution (r151,r250),
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PBR~0,1;S!5 1
2 pSe2(p/4)S2

. ~1.4!

It was verified that the formula~1.1! can, with great accu-
racy, reproduce the numerical data for the level spacing
tribution in the very high energy region, i.e., the semiclas
cal energy region, where the effective Planck constan
negligible in comparison with the volume ratio of structur
in the classical phase space@11–18#. This formula associates
the level spacing distribution of the quantum system with
geometry of the classical phase space that is affected by
bifurcation. This means that the bifurcation of the classi
dynamical system can be detected by quantum level st
tics. However, only a few attempts have been made thus
to study the interrelation between the bifurcation and
energy level statistics.

In a previous paper dealing with oval billiard system
@19#, we demonstrated that the effect of bifurcations in cla
sical Hamiltonian dynamics appears clearly in the ene
level statistics of the corresponding quantum system. Tha
the quantum mechanical value of the Berry-Robnik para
eter obtained by fitting the level spacing distribution to t
Berry-Robnik formula had a significant dependence on a s
tem parameter due to bifurcation. Figure 1 shows the Be
Robnik parameterr2

q(d) where the horizontald axis repre-
sents the system parameter anddc is the point of the
bifurcation. The Berry-Robnik parameter drops suddenly
the bifurcation point and has a dip atdc . The purpose of this
paper is to analyze this singularity of the Berry-Robnik p
rameter at the bifurcation pointd5dc .

In the oval billiard, the classical phase space is too co
plicated to deal with at the bifurcation point precisely b
cause a second chaotic region appears@19#. For this reason,
in this paper we deal with a simplified model called t
lemon billiard. The wall of this system has partially the sam
boundary geometry as that of the oval billiard, so that th
appears the identical bifurcation atdc .

The lemon billiard was first introduced by Heller an
Tomsovic @20# and studied by Ree and Reichl@21#. The
shape of the billiard depends on the value of one parame
©2001 The American Physical Society03-1
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As the parameter is varied, the system changes continuo
from integrable to nonintegrable. The transition is accom
nied by successive bifurcations, i.e., the creation and dis
pearance of a periodic orbit which has a great impact on
phase space structures.

The present paper is organized as follows. The lem
billiard is introduced in Sec. II, and Sec. III involves a
analysis of the Poincare´ surface of section where the bifu
cation parameter is determined. In Sec. IV, the stability
the linearized Poincare´ mapping is analyzed for the bifurca
ing orbit. In Sec. V, volume ratios~relative measures of th
phase space components on the Poincare´ surface of section!
are determined analytically and characteristic structures
duced by the bifurcation are also analyzed. In Sec. VI,
volume ratios are compared with the quantum mechan
data for the Berry-Robnik parameter, and the Berry-Rob
parameter in the vicinity of the bifurcation point is precise
analyzed in Sec. VII.

II. LEMON BILLIARDS

Figure 2 shows the schematic definition of the lemon b
liard. The wall]D for the billiard is constructed as follows
In a rectangular system of coordinates (x,y), we consider
four points P1 ,P2 ,P3, and P4 with coordinates (1,1),
(21,1), (21,21), and (1,21), respectively, forming a
square with side length 2. Let the point with coordinate
2d, 0! be denotedP0, whered is defined in the interval 0
,d<1. O1 is the intersection of the extension ofP1P0 and
the y axis, and it is the center of an arcP1

_
P2. The wall ]D

of the billiard consists of the above arc and another a
P3
_

P4, constructed similarly. The initial condition of the mo
tion of a particle is determined by its position and directio

The shape of the billiard wall depends on the value ofd.
In the cased51, the shape of the billiard wall is circula
and the billiard system is completely integrable. The mot
of the particle is regular for any choice of the initial cond

FIG. 1. The Berry-Robnik parameterr2
q(d) versus the system

parameterd for quantum oval billiards@19#. dc on the horizontal
axis is the bifurcation parameter point.
05620
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tion. In the parameter region 0,d,1, the billiard system is
nonintegrable and softly chaotic, where the motion of t
particle can be regular or irregular depending on the ini
condition. As the parameter is varied, the system make
transition from integrable to nonintegrable with success
bifurcations.

Since the lemon billiard is a simplified model of the ov
billiard, the geometry of its boundary wall is partially iden
tical to that of the oval billiard, so that the same bifurcati
of the periodic orbit bouncing between the regionsP1

_
P2 and

P1
_

P2 can be actualized in the lemon billiard as well.

III. BIFURCATION

We consider the successive collisions of a particle w
the wall]D and define the Birkhoff coordinates (f,sina) as
shown in Fig. 3, wheref is the normalized curvilinear dis
tance measured along the wall from the originA to the col-
lisional pointB, anda is the angle between the inner norm
and the orbit reflected from the wall]D. The Birkhoff coor-
dinates are the most natural representation of Poincare´ sur-
face of a section for billiard systems and describe the glo
behavior of the motions@22#.

Figure 4 shows the trajectories in Birkhoff coordinates
various values ofd. In the cases ofd51 ~circle! and d
5dc5(42A7)/3, the whole surface of section is complete
filled with regular and irregular orbits, respectively. In a
cases of 0,d,dc and dc,d,1, regular and irregular re

FIG. 2. Schematic picture of the lemon billiard whose bound
wall ]D consists of two circular arcs. The parameterd is defined in
the interval 0,d<1.

FIG. 3. Definition of the Birkhoff coordinates (f, sina).
3-2
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QUANTUM-CLASSICAL CORRESPONDENCES OF THE . . . PHYSICAL REVIEW E 63 056203
gions coexist in the Poincare´ surface of section.
As d increases from 0, one can observe the gradual

hancement of an irregular region around two island tori c
tered at elliptic fixed points (f50.560.25,sina50), as
shown in Figs. 4~a!–4~c!. But the sizes of these island to
suddenly change in the parameter region above the cri
point d1,

d1522A3, ~3.1!

FIG. 4. Poincare´ surfaces of section ford5 ~a! 0.00001,~b!
0.04, ~c! 0.35, ~d! 0.445,~e! 0.451 416 229 (dc), ~f! 0.452,~g! 0.5,
~h! 0.75, ~i! 0.9, and~j! 1.
05620
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where a hyperbolic periodic orbit, as shown in Fig. 5~b!,
appears suddenly atf50 and 0.5. In the parameter regio
d.d1, the corresponding hyperbolic fixed points with a p
riod of 4 compose a Poincare´ Birkhoff chain with the elliptic
fixed points with a period of 2 that are mentioned above.

As d increases further, these hyperbolic periodic points
(f[f

q

6 ,sina[ sina
q

6),

f
q

66~d!5
1

2
6

1

4
1

a
q

6

4arctan@A2d/~12d!#
,

~3.2!

sina
q

656
A3d228d13

2~12d!
,

push the island tori toward the elliptic fixed points at (f
50.560.25,sina50), as shown in Figs. 4~c!–4~e!.

Whend is equal to another critical pointdc ,

dc5
42A7

3
. ~3.3!

Here one can see a bifurcation where the hyperbolic fi
points mentioned above collide with the elliptic points
(f50.560.25,sina50) as shown in Figs. 4~e!, and simul-
taneously these fixed points disappear through the bifu
tion process. As a consequence, the whole surface of se
is filled with a chaotic orbit atd5dc . Thus one can observ
a sudden decrease in the size of the island tori betweend1
anddc , as shown in Figs. 4~c!–4~e!. We have summarized

FIG. 5. ~a! An elliptic periodic orbit with a period of 2 atd
50.4. ~b! A hyperbolic periodic orbit with a period of 4 atd50.4.
~c! Neutral periodic orbits with period 4 atd5dc .
3-3
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the above bifurcation process in diagrams, as shown in
6. d5dc is the special critical point where the centerO1 of
the arcP1

_
P2 is just atf50.25 on the opposite arcP3

_
P4, so

that a family of periodic orbits with a period of 4 appears,
shown in Fig. 5~c!, all along the linesf50.25 and f
50.75 on the Poincare´ surface of section.

In the parameter regiond.dc , elliptic fixed points with a
period of 2 are created again at (f50.560.25,sina50) as
shown in Fig. 4~f!, and as a result the phase volume of t
regular region increases again.

Furthermore, numerous bifurcations appear in addition
the one mentioned above that correlate with the creation
disappearance of various periodic orbits. We summarize
parameter values for some typical bifurcations in Appe
dixes A and B. The bifurcation atd5dc has the stronges
impact on the phase space structures among these bif

FIG. 6. Bifurcation diagram in which the solid curve represe
unstable periodic points and the dashed line represents a stab
riodic point.
05620
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tions since this bifurcation induces the creation and dis
pearance of the periodic orbit with a period of 2 that
closely associated with the largest island tori in the ph
space. In this paper, we focus our attention on this bifur
tion in the following sections.

IV. STABILITY ANALYSIS OF BIFURCATING
PERIODIC ORBIT

Here we linearize the Poincare´ mapping and analyze th
stability of the periodic points with a period of 2 at (f
50.560.25,sina50).

The (n11)th iterated point on the Poincare´ surface of
section is obtained from the previousnth point asfn11
5fn11(fn ,sinan) and sinan115sinan11(fn ,sinan).
Therefore, the Poincare´ mapping is linearized in the vicinity
of the point (f0 ,sina0) as follows:

Dfn115
]fn11

]fn
U

(f0 ,sina0)

Dfn1
]fn11

]sinan
U

(f0 ,sina0)

D sinan ,

~4.1!

D sinan115
] sinan11

]fn
U

(f0 ,sina0)

Dfn

1
] sinan11

] sinan
U

(f0 ,sina0)

D sinan . ~4.2!

In the lemon billiard system, the linearized Poincare´ map-
ping in the vicinity of the fixed point at (f50.5
60.25,sina50) is described by using the 232 monodromy
matrix as

S Dfn12

D sinan12
D 5M ~d!S Dfn

D sinan
D ~4.3!

where

s
pe-
M ~d!5S ]fn12

]fn11
U

(0.75,0)

]fn12

] sinan11
U

(0.75,0)

] sinan12

]fn11
U

(0.75,0)

] sinan12

] sinan11
U

(0.75,0)

D S ]fn11

]fn
U

(0.25,0)

]fn11

] sinan
U

(0.25,0)

] sinan11

]fn
U

(0.25,0)

] sinan11

] sinan
U

(0.25,0)

D ~4.4!

5S 2@2w~d!21#221 4w~d!@122w~d!#R~d!

4@~2w~d!21!~12w~d!#/R~d! 2@2w~d!21#221 D , ~4.5!
my
with

w~d!512
12d

A11d2
, R~d!5

A11d2

d
. ~4.6!

The stability of the periodic points at (f50.560.25,sina
50) can be estimated from eigenvalues of the monodro
matrix M (d) @23,24#, l6 , which are given in terms of the
trace ofM (d) as follows:

l6~d!5
1

2
„Tr M ~d!6$@Tr M ~d!#224%1/2

…. ~4.7!
3-4
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The orbit is stable, unstable, and neutral whenuTr M u,2,
uTr M u.2, and uTrM u52, respectively. Thus, as shown
Fig. 7, the periodic points under consideration are sta
when 0,d,dc , dc,d,1 and neutral whend50, dc , and
1. Note that the periodic points are neutral just at the bif
cation pointd5dc , and that periodic orbits with a period o
4, as shown in Fig. 5~c!, appear only at the bifurcation poin
for various reflection anglesa at f50.25 and 0.75. These
neutral periodic points compose a family of bouncing pe
odic orbits as shown in Fig. 8.

V. ANALYSIS OF CUSP AT THE BIFURCATION POINT

In this section, we analyze the volume ratio of the regu
and chaotic regions on the Poincare´ surface of section.

Figure 9 shows numerical plots of the volume ratio of t
irregular region. The ratior2(d) is obtained by using a nu
merical method introduced in Ref.@19#. The ratio r2(d)

FIG. 7. The trace of the monodromy matrixuTr M (d)u.

FIG. 8. Schematic picture of a periodic orbit that appears onl
the bifurcation point d5dc . The periodic orbits, which pas
through the pointO1 on the symmetry line, compose a family o
bouncing ball orbits.
05620
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shows sudden increases at various parameter points. T
points of increase correspond to bifurcation parameters;
give some of these parameter values in Appendixes A an
The ratior2(d) at the parameter pointd5dc shows a sig-
nificant structure due to the bifurcation. Here let us analy
the precise structure of this function atd5dc .

The phase space in the regiond1,d,dc consists of is-
land tori centered at (f50.560.25,sina50) and a single
chaotic sea, as shown in Fig. 4~e!, so that the total volume
ratio of the regular regionr1(512r2) is calculated effec-
tively only from the contributions of the island tori. Thes
island tori are encircled by the unstable periodic points
(f

q

66 ,sina
q

6). In the parameter regiond1<d<dc the outer
bound surface of the island torus is approximated succ
fully by a rectangle. The two sides of this rectangle are
noted byA andB, and the lengths of these sides are given
the distances between the unstable periodic points as
lows:

A~d!5f
q

212f
q

225f
q

112f
q

125
arcsinB~d/2!

2arctan@A2d/~12d!#
,

~5.1!

B~d!5 sina
q

12 sina
q

25
A3d228d13

12d
. ~5.2!

Therefore the ratiosr1 and r2 can be determined approx
mately as functions ofd as follows:

r1~d!.A~d!3B~d!, d1<d<dc , ~5.3!

r2~d!512r1~d!. ~5.4!

Note thatr1(d) decreases toward 0 asd→dc .
Here let us focus our attention on the parameter dep

dence ofr1(d) andr2(d) in the neighborhood of the bifur
cation point d5dc . Equations~5.1! and ~5.2! can be ex-
panded by describingd[dc2e for small e (!dc) as

A5
A826dc

4~12dc!arctan@A2dc/~12dc!#
e1/21O~e3/2!,

~5.5!

t

FIG. 9. Numerical plots ofr2(d).
3-5
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B5
A826dc

2~12dc!
e1/21O~e3/2!, ~5.6!

and hence Eqs.~5.3! and ~5.4! can be rewritten as

r1~e!5c~dc!e1O~e2!, ~5.7!

r2~e!512r1~e!, ~5.8!

where

c~dc!5
423dc

2~12dc!
2arctan@A2dc/~12dc!#

. ~5.9!

It should be noted thatr1(d) at the bifurcation point is a
cusp since the constant term does not appear in the a
expansion~5.7!, while the expansion coefficient of the firs
order term does not vanish, and hencer1(e) at the bifurca-
tion point is a linear curve.

FIG. 10. Comparison ofr2(d) between an analytic curve an
numerical plots in the vicinity of the bifurcation point atd5dc . We
have not yet succeeded in determining an analytic solution
r2(d) in the parameter regiond>dc .
05620
ve

The above analytic solution~5.3!, depending on the ap
proximation by the rectangle, is validated numerically. F
ure 10 shows schematic comparisons ofr2(d) between an
analytic curve of Eq.~5.4! and numerical plots in the interva
d1<d<dc . The numerical plots are obtained by using t
method introduced in Ref@19#. One can see that the numer
cal data fit the analytic curve well in the parameter reg
betweend1 and dc and reproduce the linearity of Eq.~5.7!
with a high degree of accuracy. Thus we see that the appr
mation of Eq. ~5.3! is validated numerically and that th
analytic curvesr1(d) and r2(d) almost completely repro-
duce, respectively, the regular and chaotic regions in
phase space betweend1 anddc .

VI. THE BERRY-ROBNIK PARAMETER
AT THE BIFURCATION POINT

Here we compare the volume ratior i of the phase space
component with the quantum mechanical data for the Be
Robnik parameterr i

q .1 Figures 11~a!–11~c! show schematic
comparisons betweenr2(d) and r2

q(d) for various energy
ranges wheren is the level number of a desymmetrize
eigenstate with odd-odd parity. The Berry-Robnik parame
is obtained by fitting the level spacing distributionsP(S) of
the quantum lemon billiard to the Berry-Robnik formu
~1.1!, where the fitting parameterr i

q is determined by the
least squares method for the cumulative level spacing di
bution W(S)5*0

SP(S8)dS8. One can see that the quantu
mechanical valuer2

q(d) clearly reproduces the global en
hancement ofr2(d) in the neighborhood of the bifurcatio
point. However, a large deviation exists betweenr2

q(d) and
r2(d) in the low energy ranges, as shown in Figs. 11~a! and
11~b!. This is because the Berry-Robnik formula is app
cable only in the so-called semiclassical regime in the h
energy region where the effective Planck constantheff(n),

1The relationship between the relative measurer2 on the Poincare´
surface of section and the relative Liouville measure on the ene
surface is explained in Sec. VIII.
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FIG. 11. Schematic compari
son between the Berry-Robnik pa
rameterr2

q(d) (L) and the vol-
ume ratio of the chaotic region
r2(d) ~solid curve! for various en-
ergy ranges. In each case, we us
2000 eigenenergy levelsEn with
~a! nP@2001,4000#, ~b! n
P@8001,10 000#, and ~c! n
P@17 001,19 000# which have
odd-odd parity. The quantum me
chanical valuer2

q(d) is calculated
effectively by the boundary ele
ment method@26#.
3-6
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FIG. 12. Schematic compari
son between the Berry-Robnik pa
rameterr1

q(e) (L) and the ana-
lytic curve of the volume ratio
r1(e) near the bifurcation point
e50. In each case, 2000 eigene
ergy levelsEn are used with~a!
nP@2001,4000#, ~b! n
P@8001,10000#, and ~c! n
P@17 001,19 000# with odd-odd
parity.
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heff~n!.
1

A4n
, ~6.1!

is sufficiently smaller than the volume ratio of the island t
@16#,

~n,d!P$heff~n!!r1~d!%, ~6.2!

the Berry-Robnik parameter in the low energy range does
agree with the counterpart in the classical dynamical syst
Accordingly, the deviation betweenr2

q(d) and r2(d) be-
comes smaller as the energy range of the quantum sy
becomes much higher, as shown in Figs. 11~b! and 11~c!.

It is noteworthy that there is still a large deviation b
tweenr2

q(d) andr2(d) in the neighborhood of the bifurca
tion point, i.e., the Berry-Robnik parameter at the bifurcat
point is blunt while the volume ratio of the chaotic region
the classical dynamical system is cuspidal.

Figures 12~a!–12~c! compare the volume ratio of th
regular regionr1(e) and the Berry-Robnik parameterr1

q(e)
in the neighborhood of the bifurcation point ate50. Here
we have to remember that the ratior1(e) has a linear depen
dence on the system parametere as shown in Eq.~5.7!. One
can see that there is a large deviation betweenr1(e) and
r1

q(e) in the neighborhood of the bifurcation point and th
the linear dependence on the system parameter is not re
duced by the quantum mechanical value of the Berry-Rob
parameter. This means that the Berry-Robnik formula d
not work at all in the vicinity of the bifurcation point. Th
above disagreement is analyzed in the next section.

VII. QUANTUM MECHANICAL LIMITS IN RESOLUTION
OF THE BERRY-ROBNIK PARAMETER

In the last section, we showed numerically that the Ber
Robnik parameter does not agree with the volume ratio
the classical phase space in the neighborhood of the bifu
tion point. Although the volume ratio of the classical d
namical system,r i ,i 51,2, at the bifurcation point showed
cuspidal structure and a linear dependence on the sy
parameter, the quantum mechanical counterparts, the B
Robnik parameterr i

q ,i 51,2, could not reproduce these cha
05620
i

ot
.

m

t
ro-
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acteristic structures at the bifurcation pointe50 or d5dc .
This is because the size of the island region decreases to
0 ase→0, and the quantum system at the bifurcation po
cannot satisfy the condition of Eq.~6.2! while in the finite
energy range,n!`,

lim
e→0

r1~e!. lim
e→0

c~dc!e50. ~7.1!

Therefore, the Berry-Robnik formula in the finite energ
range does not work effectively in the neighborhood of t
bifurcation point. The conditionr1(e)5heff(n) for a given
energy leveln gives a critical value of the system parame
e which is calculated from Eq.~5.3!, Eq. ~6.1!, and e5dc
2d as follows:

ec~n!5dc2r1
21

„heff~n!…. ~7.2!

In the region near the bifurcation point, 0,e,ec(n) @ or
dc2ec(n),d,dc], quantum systems cannot resolve the
land regions sinceheff(n).r1. The sizes of island region
are beyond the maximum ability of the resolution by t
quantum eigenstate, so that the Berry-Robnik formula is
applicable to the quantum system. This means that the Be
Robnik parameterr1

q is not guaranteed to reproducer1. On
the other hand, in the parameter regione.ec(n) @or d,dc
2ec(n)], the quantum system can resolve the island reg
since the effective Planck constant is smaller than the siz
the island region,heff(n),r1(e). In the parameter regione
@ec(n) the Berry-Robnik formula works well since the e
fective Planck constant is sufficiently smaller than the size
the island region,heff(n)!r1. Therefore, one can observe
the parameter region near the bifurcation pointe50 that the
quantum mechanical valuer i

q(e) cannot reproduce its coun
terpart in the classical dynamical system,r i(e).

Figures 12~a!–12~c! show schematic comparisons b
tween the Berry-Robnik parameter for various energy
gionsr1

q(e) and the analytic curve of the ratior1(e) given
by Eq.~5.3!. In each figure, the vertical dotted line represe
10ec(n). One can see thatr1

q(e) agrees withr1(e) in the
region e@ec(n). On the other hand, a large deviation a
pears between them near the origine50. Note that the cus-
3-7
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pidal structure in the vicinity of the bifurcation point cann
be reproduced by the quantum mechanical Berry-Robnik
rameter at all. One can see that the blunt region near
origin, 0<e<10ec(n), gets smaller as the energy of the sy
tem gets higher. This is becauseec(n) decreases to 0 asn
→`,

lim
n→`

ec~n!' lim
n→`

1

c~dc!

1

A4n
50, ~7.3!

so that the blunt region diminishes in width in the semicl
sical limit. Table I shows the Berry-Robnik parameter at t
bifurcation point for various energy ranges. The Ber
Robnik parameterr1

q(dc) does not agree with the volum
ratio r1(dc)(50) in any energy range, and the deviatio
from this ratio is very large in the low energy range. Ho
ever, the deviation at the origin becomes smaller as the
ergy of the quantum system gets higher, and the Be
Robnik parameter agrees with the volume ratio better in
high energy ranges than in the low energy ranges. There
one can see that the Berry-Robnik parameter can repro
the cuspidal structure of the functionr i(d) at d5dc more
precisely in the higher energy region and that the quan
mechanical Berry-Robnik parameterr1

q(e) reproduces the
linear dependence ofr1(e) on e very well in the semiclas-
sical regime, as shown in Eq.~6.2!. This result means tha
the statistical properties of energy levels in the high ene
range can be reflected sensitively by the local enhancem
of island tori in the classical phase space whose volume
tios are controlled by the periodic orbit at (f

q

66 ,sina
q

6).

VIII. SUMMARY AND DISCUSSION

In this paper, we analyzed the quantum mechanical Be
Robnik parameter, which is affected by a bifurcation of t
classical dynamical system. We revealed the detailed st
ture of the Berry-Robnik parameter at the bifurcation poi
i.e., the Berry-Robnik parameter in the semiclassical ene
region was shown to have a linear dependence on the sy
parameter in the vicinity of the bifurcation point and to
cuspidal just at the bifurcation point.

The quantum Berry-Robnik parameter, which was o
tained by applying the Berry-Robnik formula to the lev
spacing distribution, agreed well with the classical volum
ratio ~the relative measure of the phase space componen
the Poincare´ surface of section! in the high energy range an
was greatly affected by the bifurcation. Thus we were able

TABLE I. The Berry-Robnik parameter at the bifurcation poin
r1

q(dc), for various ranges of energy levels.

n r1
q(dc)512r2

q

2001–4000 0.243
8001–10000 0.182

17001–19000 0.157
33001–35000 0.093
52001–54000 0.072
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analyze the Berry-Robnik parameter in terms of the class
volume ratio.

First, the phase volume of the regular and chaotic regi
in the classical phase space was determined analytically
function of the system parameter. Using the unstable p
odic orbit, the total phase volume of the island tori could
approximated successfully with rectangles, and could
characterized as a function of the system parameter. The
ume function was expanded by a small parameter in the
cinity of the bifurcation point. We were able to show that t
volume function was cuspidal just at the point of the bifu
cation since the constant term in the expansion series
ished, and that the volume function had a linear depende
on the system parameter near the bifurcation point since
expansion coefficient of the first order term did not vanis
Therefore, we were able to determine the structure of
volume ratio at the bifurcation point.

Secondly, we numerically checked the above analytic
sults for the volume ratio of the classical phase space.
volume ratios of the regular and chaotic regions agreed w
with the numerical results of these regions. Thus, the
proximation part of the analytic derivation was numerica
validated.

Thirdly, the quantum mechanical data Berry-Robnik p
rameter was compared with the volume ratio of the class
phase space in the vicinity of the bifurcation point. Howev
a large deviation appeared between them; the Berry-Rob
parameter at the bifurcation point was blunt and could
precisely reproduce the cuspidal structure of the volume r
and linearity. This is because the Berry-Robnik formula tru
describes the quantum level statistics only in the extra d
semiclassical regime~or high energy region!, while in the
low energy range it does not work well since the quant
eigenstate cannot resolve the detailed structure in the p
space. We compared the effective Planck constant with
phase volume of the island tori that we determined anal
cally, and derived as a function of the level numbern the
characteristic threshold of the system parameterec(n) that
described the parameter region around the bifurcation p
when the Berry-Robnik formula did not work well. W
checked numerically that the quantum mechanical data of
Berry-Robnik parameter in the regione@ec(n) accurately
reproduced the classical volume ratio where the effec
Planck constant was sufficiently smaller than the volume
tio of the island region. Therefore, we analytically and n
merically evaluated the origin of the disagreement betw
the Berry-Robnik parameter and its counterpart the class
volume function in terms of the limit of resolution for th
island tori by the quantum eigenstate.

Finally, we showed numerically that the Berry-Robnik p
rameter in the high energy region accurately approxima
the classical volume ratio, and that it reproduced the c
and the linear dependence more precisely in the high en
range than in the low energy range.

In this paper, we used as the classical Berry-Robnik
rameter the relative measurer2(SOS) of the phase spac
components on the Poincare´ surface of section~SOS!. But it
is the Liouville measurer2(G) on the energy surface
@G:H(q,p)5E5const# that must be used. According to th
3-8
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Berry-Robnik theory@10#, the Liouville measure should b
equal to the quantum Berry-Robnik parameter in the st
semiclassical limit, so that we should discuss, for a giv
invariant componentv (52), the relationship betwee
r2(G) and r2 ~SOS!, and their equivalence in our mode
This relationship was derived by Meyer as follow
@25,8,11,26#,

rv~G!5

E
G
dqdpd„E2H~q,p!…xv~q,p!

E
G
dqdpd~E2H~q,p!!

5

E
SOS

dXt~X!xv~X!

E
SOS

dXt~X!

5

tvE
SOS

dXxv~X!

E
SOS

dXt~X!

5Cvrv~SOS!, ~8.1!

wherexv(X) is the characteristic function of the invaria
component defined as

xv~X!5H 1 if XPv

0 if XPv̄

and

Cv5

tvE
SOS

dX

E
SOS

t~X!dX

5
tv

tSOS
~8.2!

5

E
XPv

dX1E
XPv̄

dX

E
XPv

dX1~1/tv!E
XPv̄

t~X!dX

. ~8.3!

t is the average time of recurrence of a trajectory to the S
which is constant for a given trajectory and thus also insid
given invariant component, e.g.,tv5t(XPv)5const, but
changes from one component to another. One can see
Eq. ~8.1! that rv(G) andrv ~SOS! are not the same. How
ever, in the neighborhood of the bifurcation point atdc ,
Cv.1 since each term in Eq.~8.3! satisfies the relation

E
XPv

dX@E
XPv̄

dX, E
XPv

dX@
1

tv
E

XPv̄
t~X!dX,

~8.4!

so thatr2 ~SOS! approximatesr2(G) very well in the neigh-
borhood of the bifurcation point. This means that the ch
acteristic structure ofr2 ~SOS! at d5dc , i.e., the cusp sin-
gularity and the linearity, is reproduced by the Liouvil
measurer2(G) on the energy surface as well.

The assumptions used in the derivation of the Ber
Robnik formula have not yet been validated from the th
05620
t
n

S,
a

m

r-

-
-

retical viewpoint, although there is a lot of numerical ev
dence to verify the validity of the Berry-Robnik formula
Prosen and Robnik found that this formula approximates
numerical data in the far semiclassical regime better than
Brody distribution does@14,16,12#. Li and Robnik@18#, Jac-
quod and Amiet@26#, Prosen@15#, and Makino, Harayama
and Aizawa@17# separated the energy levels into regular a
irregular subclasses, and analyzed substatistics for each
in order to check the Berry-Robnik conjecture@10#. In this
paper, by using the lemon billiard system, we showed t
the Berry-Robnik parameter at the bifurcation point cou
not agree exactly with the classical volume ratio while in t
finite energy range. However, in the high energy region
reproduced well the characteristic structure of the class
volume ratio due to the bifurcation.

APPENDIX A: BIFURCATION POINTS OF GLANCING
PERIODIC ORBITS

Glancing periodic orbits with a period of 2(n11),n
51,2,3, . . . , which are shown in Fig. 13, can exist in th
parameter region

dn<d<1, ~A1!

where

dn5d~n!2Ad~n!221, ~A2!

d~n!5111/tan2S p

2

n

n11D , n51,2,3, . . . . ~A3!

The critical valuesd5dn are special parameter points whe
the glancing periodic orbits, subscripted byn, appear sud-
denly from the singular regions on the boundary wall,f
50 and 0.5. In the parameter region Eq.~A1!, the corre-
sponding periodic points on the Poincare´ surface of section
are„f(n),sina(n)…,

f~n!5
1

4 F12
a~n!

arctan@A2d/~12d!#
G , ~A4!

FIG. 13. A family of glancing periodic orbits that are sub
scripted byn.
3-9
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a~n!5
p

2

n

n11
. ~A5!

APPENDIX B: BIFURCATION POINTS OF BOUNCING
PERIODIC ORBITS

Tne bouncing periodic orbit with a period of 4n,n
51,2,3, . . . , can beclassified into two series of typica
types, i.e., typeMn and typeWn as shown in Figs. 14~a!–
14~b! and Figs. 14~c!–14~d!, respectively. Although we hav
not succeeded in deriving the bifurcation parameters of th
periodic orbits in a systematic formulation of the subscri
n, some parameter values are shown below where the p
odic orbits, classified by the subscriptMn or Wn , appear
suddenly from the singular regions on the boundary w
f50 and 0.5. These periodic orbits can exist in the para
eter region beyonddMn

or dWn
.

dM1522A350.267 949 192 4. . . , ~B1!

dM25xS 12x5
2x2~12x!~12x2A11x2!

A2x1~12x2A11x2!
D

5x~a solution of the equation 5x4240x3174x2

240x1550!

50.178 233 390 1 . . .

], ~B2!

FIG. 14. Bouncing periodic orbits that are classified into tw
types of series, typeMn and typeWn (n51,2).
et

05620
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-

dW15
42A7

3
50.451 416 229 . . . , ~B3!

dW2542A1550.127 016 653 8. . . , ~B4!

dW35xS x224x11

A11x2
5

2x214x211~12x!A11x2

A2x1~A11x22~12x!!2
D

5x~a solution of the equation7x62112x51469x4

2736x31469x22112x17!,

50.094 976 632 82 . . .

]. ~B5!

APPENDIX C: EFFECTIVE PLANCK CONSTANT

Quantum mechanics withf degrees of freedom can re
solve fine structures whose volume in the 2f -dimensional
phase space is larger thanhf or (2p\) f . hf is called the
Planck volume. The number of eigenenergy levels coun
from the ground state,N, is obtained by applying the
Thomas-Fermi approximation that each quantum state is
sociated with a phase-space volumehf . One has therefore

N.
V

hf
, ~C1!

whereV is the phase volume of the classical dynamical s
tem. Equation~C1! is the Weyl term. The Planck volum
normalized by the volume of the whole phase space,V, is
expressed as

heff
f [

hf

V
.

1

N
. ~C2!

For plane billiard systems withf 52 in particular, Eq.~C2! is
rewritten asheff

2 .1/N so that the corresponding area in th
tangential space~or in the Poincare´ surface of section! is
described by taking the square root of Eq.~C2! with f 52 as
follows:

heff5
h

AV
.

1

A4n
, ~C3!

whereN54n. heff(n) is called the effective Planck constan
It gives the minimum area in the Poincare´ surface of section
whose structure can be resolved by the quantum eigens
er,
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